整體薄壁結構零件的側壁高速銑削加工
發(fā)布日期:2013-09-06 蘭生客服中心 瀏覽:4731
現(xiàn)代航空工業(yè)中大量使用整體薄壁結構零件。其主要結構由側壁和腹板組成。因為結構簡潔、尺寸較大、加工余量大。相對剛度較低,故加工工藝性差。在切削力、切削熱、切削振顫等因素影響下,易發(fā)生加工變形,不易控制加工精度和提高加工效率。加工變形和加工效率問題成為薄壁結構加工的重要約束。因此,針對銑刀的特殊結構與機床特性,提出了有效的銑削方法,使薄壁件的加工技術有了新的突破。
一、優(yōu)化高速銑削刀具路徑
應用高速切削技術加工薄壁零件的關鍵在于切削過程的穩(wěn)定性。大量的實驗工作證明,隨著零件壁厚的降低,零件的剛性減低,加工變形增大,容易發(fā)生切削振顫,影響零件的加工質量和加工效率。充分利用零件整體剛性的刀具路徑優(yōu)化方案。其思想在于在切削過程中,盡可能的應用零件的未加工部分作為正在銑削部分的支撐,使切削過程處在剛性較佳的狀態(tài)。
圖1薄壁(側壁)加工示意圖 圖2單軸銑削示意圖 圖3雙軸銑削示意圖
如圖1所示,對于側壁的銑削加工,在切削用量允許范圍內,采用大徑向切深、小軸向切深分層銑削加工,充分利用零件整體剛性(見圖1(a))。為防止刀具對側壁的干涉,可以選用或設計特殊形狀銑刀,以降低刀具對工件的變形影響和干擾(見圖1(b))。
對于較深的型腔和側壁的高效銑削加工,在研究動態(tài)銑削的基礎上,提出合理的大長徑比刀具可以有效的解決該類問題。在較高的機床主軸轉速和功率狀態(tài)下,通過調整刀具的懸伸長度來調整機床—刀具—工件工藝系統(tǒng)的自然頻率,利用凸角穩(wěn)定效應(stabilityoflobeeffects),避開可能的切削振動,可用較大的軸向切深銑削深腔和側壁。實驗結果表明,該方法有較大的金屬去除率和較高的表面完整性。
二、雙主軸加工控制變形
由于銑削力的作用,工件的側壁會產(chǎn)生“讓刀”變形(見圖2),因此,應用一個立銑刀很難實現(xiàn)薄壁零件的高精加工。常規(guī)的小進給量和低切深的方法雖然可以滿足一定的加工精度,但是效率比較低。平行雙主軸方案可以有效的解決單一主軸加工零件的變形問題。該方法需要同時應用兩個回轉半徑、有效長度及螺旋升角大小相同的立銑刀,刀刃分別為左旋和右旋(見圖3)。采用平行雙主軸加工方案,由于工件兩側受力為對稱力,所以除了微量的刀具變形引起的加工誤差以外,工件的加工傾斜變形基本上可以消除。
采用平行雙主軸加工薄壁零件,有效的控制了薄壁零件的加工變形問題,零件的加工精度和加工效率顯著提高,可以應用于簡單形狀的側壁加工。但是其局限性也在于該方法僅能加工簡單薄壁零件的側壁,而且對機床雙主軸的間距有要求,結構復雜,不適合普遍采用。
上一篇:整體薄壁結構零件腹板的高速銑削加工
下一篇:汽車發(fā)動機缸蓋缸體的高速加工
-
飛機零部件制造對高速銑削機床的需求
大飛機零件具有外廓尺寸大、結構復雜、重量輕的特點,在多個對接部位或活動面處有精度要求較高的多面體接頭類零件。同時,隨著新型材料技術的不斷發(fā)展和飛機整體強度重量比設計要求的不斷提高,復合材料在大飛機中的用量也越來越大。大飛機零件的這些特點對數(shù)
2013-09-06 -
高速銑削技術在飛機制造的應用
大飛機數(shù)控加工工藝技術的實現(xiàn),必須依賴于滿足使用要求的先進數(shù)控設備和高質量的數(shù)控刀具,換言之,就是數(shù)控設備必須具有大行程、高轉速、高進給、高精度和五軸聯(lián)動等特點;數(shù)控刀具必須滿足高動平衡等級、高剛性、良好的耐磨性和紅硬性等技術要求,刀具接口
2013-09-06 -
鋁合金整體結構件高速銑削刀具材料的選擇
飛機機體的 60%~70%為加入Si、Cu、Mn等合金元素的7075、7050、2024、6061類熱處理預拉伸變形鋁合金材料,物理和機械性能如表1所示。 表1 航空鋁合金材料的物理與機械性能 鋁合金牌號及狀態(tài) 熱膨脹系數(shù)(20~1
2013-09-06 -
鋁合金高速銑削刀具參數(shù)選擇
鋁合金的高速切削加工,速度很高,刀具前刀面溫升高,前角比常規(guī)切削時的刀具前角約小10°,后角稍大約5°~8°,主副切削刃連接處需修圓或導角,以增大刀尖角和刀具的散熱體積,防止刀尖處的熱磨損,減少刀刃破損的概率。在PCD刀具超高速切削鋁合金時
2013-09-06