光柵測量技術(shù)的發(fā)展介紹
發(fā)布日期:2012-08-10 蘭生客服中心 瀏覽:2691
從20世紀(jì)50年代至70年代,柵式測量系統(tǒng)從感應(yīng)同步器發(fā)展到光柵、磁柵、容柵和球柵,這5種測量系統(tǒng)都是將一個柵距周期內(nèi)的絕對式測量和周期外的增量式測量結(jié)合起來,測量單位不是像激光一樣的光波波長,而是通用的米制(或英制)標(biāo)尺。它們有各自的優(yōu)點,相互補充,在競爭中都得到了發(fā)展。但光柵測量系統(tǒng)的綜合技術(shù)性能優(yōu)于其它4種,而且其制造費用又比感應(yīng)同步器、磁柵、球柵低,因此光柵發(fā)展最快,技術(shù)性能最高,市場占有率最高,產(chǎn)業(yè)最大。在柵式測量系統(tǒng)中,光柵的占有率已超過80%,光柵長度測量系統(tǒng)的分辨率已覆蓋微米級、亞微米級和納米級;測量速度從60m/min至480m/min。測量長度從1m、3m至30m和100m。?
光柵測量技術(shù)的發(fā)展
計量光柵技術(shù)的基礎(chǔ)——莫爾條紋(Moire fringes)是由英國物理學(xué)家L Rayleigh首先提出的。到20世紀(jì)50年代才開始利用光柵的莫爾條紋進(jìn)行精密測量。1950年,德國Heidenhain首創(chuàng)DIADUR復(fù)制工藝,即在玻璃基板上蒸發(fā)鍍鉻的光刻復(fù)制工藝,可制造出高精度、價格低廉的光柵刻度尺,所以光柵計量儀器才被廣大用戶所接受,并進(jìn)入商品市場。1953年,英國Ferranti公司提出了一個4相信號系統(tǒng),可以在一個莫爾條紋周期實現(xiàn)4倍頻細(xì)分,并能鑒別移動方向,這就是4倍頻鑒相技術(shù),是光柵測量系統(tǒng)的基礎(chǔ),并一直應(yīng)用至今。?
60年代初,德國Heidenhain公司開始開發(fā)光柵尺和圓柵編碼器,并制造出柵距為4μm(250線/mm)的光柵尺和10000線/轉(zhuǎn)的圓光柵測量系統(tǒng),可實現(xiàn)1μm和1角秒的測量分辨率。1966年又制造出了柵距為20μm(50線/mm)的封閉式直線光柵編碼器。在80年代又推出了AURODUR工藝,是在鋼基材料上制作高反射率的金屬線紋反射光柵,并在光柵一個參考標(biāo)記(零位)的基礎(chǔ)上增加了距離編碼。1987年,又提出一種新的干涉原理,即采用衍射光柵實現(xiàn)納米級的測量,并允許較寬松的安裝。1997年推出用于絕對編碼器的EnDat雙向串行快速連續(xù)接口,使絕對編碼器和增量編碼器一樣很方便地應(yīng)用于測量系統(tǒng),F(xiàn)在光柵測量系統(tǒng)已十分完善,應(yīng)用的領(lǐng)域很廣,全世界光柵直線傳感器的年產(chǎn)量在60萬件左右,其中封閉式光柵尺約占85%,開啟式光柵尺約占15%。在Heidenhain公司的產(chǎn)品銷售額中,直線光柵編碼器約占40%,圓光柵編碼器占30%,數(shù)顯、數(shù)控及倍頻器占30%。Heidenhain公司總部的年銷售額約為7億歐元(不含Heidenhain跨國公司所屬的40家企業(yè))。國外企業(yè)的人均產(chǎn)值在10~15萬美元左右,研究開發(fā)人員約占雇員的10%,產(chǎn)品研發(fā)經(jīng)費約占銷售額的15%。
當(dāng)今采用的光電掃描原理及其產(chǎn)品系列
根據(jù)形成莫爾條紋原理的不同,激光可分為幾何光柵(幅值光柵)和衍射光柵(相位光柵),又可根據(jù)光路的不同分為透射光柵和反射光柵。微米級和亞微米級的光柵測量是采用幾何光柵,光柵柵距為100μm至20μm,遠(yuǎn)大于光源光波波長,衍射現(xiàn)象可以忽略,當(dāng)兩塊光柵相對移動時產(chǎn)生低頻拍現(xiàn)象形成莫爾條紋,其測量原理稱影像原理。納米級的光柵測量是采用衍射光柵,光柵柵距為8μm或4μm,柵線的寬度與光的波長很接近,則產(chǎn)生衍射和干涉現(xiàn)象形成莫爾條紋,其測量原理稱干涉原理,F(xiàn)將德國Heidenhain公司產(chǎn)品采用的三種測量原理加以介紹。?
(1)具有四場掃描的影像測量原理(透射法)?
采用垂直入射光學(xué)系統(tǒng)均為4相信號系統(tǒng),是將指示光柵(掃描掩膜)開四個窗口分為4相,每相柵線依次錯位1/4柵距,在接收的4個光電元件上可得到理想的4相信號,這稱為具有四場掃描的影像測量原理。Heidenhain的LS系列產(chǎn)品均采用此原理,其柵距為20μm,測量步距為0.5μm,準(zhǔn)確度為±10、±5、±3μm三種,最大測量長度為3m,載體為玻璃。
(2)有準(zhǔn)單場掃描的影像測量原理(反射法)?
反射標(biāo)尺光柵是采用40μm柵距的鋼帶,指示光柵(掃描掩膜)用兩個相互交錯并有不同衍射性能的相位光柵組成,為此,一個掃描場就可以產(chǎn)生相移為1/4柵距的四個圖象,稱此原理為準(zhǔn)單場掃描的影像測量原理。由于只用一個掃描場,標(biāo)尺光柵局部的污染使光場強度的變化是均勻的,并對四個光電接收元件的影響是相同的,因此不會影響光柵信號的質(zhì)量。與此同時,指示光柵和標(biāo)尺光柵的間隙和間隙方差能大一些。Heidenhain LB和LIDA系列的金屬反射光柵就是采用這一原理。LIDA系列開式光柵,其柵距為40μm和20μm,測量步距為0.1μm,準(zhǔn)確度有±5μm、±3μm,測量長度可達(dá)30m,最大速度為480m/min。LB系列閉式光柵柵距都是40μm,最大速度可達(dá)120m/min。?
(3)單場掃描的干涉測量原理
對于柵距很小的光柵,指示光柵是一個透明的相位光柵,標(biāo)尺光柵是自身反射的相位光柵,光束是通過雙光柵的衍射,在每一級的諸光束相互干涉,就形成了莫爾條紋,其中+1和-1級組干涉條紋是基波條紋,基波條紋變化的周期與光柵的柵距是同步對應(yīng)的。光調(diào)制產(chǎn)生3個相位差120°的測量信號,由三個光電元件接收,隨后又轉(zhuǎn)換成通用的相位差90°的正弦信號。Heidenhain LF、LIP、LIF系列光柵尺是按干涉原理工作,其光柵尺的載體有鋼板、鋼帶、玻璃和玻璃陶瓷,這些系列產(chǎn)品都是亞微米和鈉米級的,其中最小分辨率達(dá)到1納米。
在20世紀(jì)80年代后期,柵距為10μm的透射光柵LID351(分辨率為0.05μm),其間隙要求就比較嚴(yán)格(0.1±0.015)mm。由于采用了新的干涉測量原理,對納米級的衍射光柵安裝公差就放得比較寬,例如指示光柵和標(biāo)尺光柵之間的間隙和平行度都很寬(見表1)。
表1 指示光柵和標(biāo)尺光柵之間的間隙和平行度
光柵型號-信號周期(μm)-分辨率(nm)-間隙(mm)-平行度(mm)
LIP372-0.218-1-0.3-±0.02
LIP471-2-5-0.6-±0.02
LIP571-4-50-0.5-±0.06
只有衍射光柵LIP372的柵距是0.512μm,經(jīng)光學(xué)倍頻后,信號周期為0.128μm,其它柵距均為8μm和4μm,經(jīng)光學(xué)二倍頻后得到的信號周期為4μm和2μm,其分辨率為5nm和50nm,系統(tǒng)準(zhǔn)確度為±0.5μm和±1μm,速度為30m/min。LIF系列柵距是8μm,分辨率0.1μm,準(zhǔn)確度±1μm,速度為72m/min。其載體為溫度系數(shù)近于零的玻璃陶瓷或溫度系數(shù)為8ppm/K的玻璃。衍射光柵LF系列是閉式光柵尺,其柵距為8μm,信號周期為4μm,測量分辨率0.1μm,系統(tǒng)準(zhǔn)確度±3μm和±2μm,最大速度60m/min,測量長度達(dá)3m,載體采用鋼尺和鋼膨脹系數(shù)(10ppm/K)一樣的玻璃。?
光柵測量系統(tǒng)的幾個關(guān)鍵問題
(1)測量準(zhǔn)確度(精度)?
光柵線位移傳感器的測量準(zhǔn)確度,首先取決于標(biāo)尺光柵刻線劃分度的質(zhì)量和指示光柵掃描的質(zhì)量(柵線邊沿清晰至關(guān)重要),其次才是信號處理電路的質(zhì)量和指示光柵沿標(biāo)尺光柵導(dǎo)向的誤差。影響光柵尺測量準(zhǔn)確度的是在光柵整個測量長度上的位置偏差和光柵一個信號周期內(nèi)的位置偏差。?
光柵尺的準(zhǔn)確度(精度)用準(zhǔn)確度等級表示,Heidenhain定義為:在任意1m測量長度區(qū)段內(nèi)建立在平均值基礎(chǔ)上的位置偏差的最大值Fmax均落在±a(μm)之內(nèi),則±a為準(zhǔn)確度等級。Heidenhain準(zhǔn)確度等級劃分為:±0.1、±0.2、±0.5、±1、±2、±3、±5、±10和±15μm。由此可見,Heidenhain光柵尺的準(zhǔn)確度等級和測量長度無關(guān),這是很高的一個要求,目前還沒有一家廠商能夠達(dá)到這一水平。?
現(xiàn)在Heidenhain玻璃透射光柵和金屬反射光柵的柵距只采用20μm和40μm,對衍射光柵柵距采用4μm和8μm,光學(xué)二倍頻后信號周期為2μm和4μm。Heidenhain要求開式光柵一個信號周期的位置偏差僅為±1%,閉式光柵僅為±2%,光柵信號周期及位置偏差見表2。?
表2 光柵信號周期及位置偏差
光柵類別-信號周期(μm)-一個信號周期內(nèi)的位置偏差(μm)
幾何光柵-20和40-開啟式光柵尺±1%,即±0.2~±0.4;封閉式光柵尺±2%,即±0.4~±0.8
衍射光柵-2和4-開啟式光柵尺±1%,即±0.02~±0.04;封閉式光柵尺±2%,即±0.02~±0.08
(2)信號的處理及柵距的細(xì)分?
光柵的測量是將一個周期內(nèi)的絕對式測量和周期外的增量式測量結(jié)合在一起,也就是說在柵距一個周期內(nèi)將柵距細(xì)分后進(jìn)行絕對的測量,超過周期的量程則用連續(xù)的增量式測量。為了保證測量的精度,除了對光柵的刻劃質(zhì)量和運動精度有要求外,還必須對光柵的莫爾條紋信號的質(zhì)量有一定的要求,因為這影響電子細(xì)分的精度,也就是影響光柵測量信號的細(xì)分?jǐn)?shù)(倍頻數(shù))和測量分辨率(測量步距)。柵距的細(xì)分?jǐn)?shù)和準(zhǔn)確性也影響光柵測量系統(tǒng)的準(zhǔn)確度和測量步距。對莫爾條紋信號質(zhì)量的要求主要是信號的正弦性和正交性要好;信號直流電平漂移要小。對讀數(shù)頭中的光電轉(zhuǎn)換電路和后續(xù)的數(shù)字化插補電路要求頻率特性好,才能保證測量速度高。?
Heidenhain公司專門為光柵傳感器和crc相聯(lián)結(jié)設(shè)計了光柵倍頻器,即將光柵傳感器輸出的正弦信號(一個周期是一個柵距)進(jìn)行插補和數(shù)字化處理后給出相位相差90°的方波,其細(xì)分?jǐn)?shù)(倍頻數(shù))有5、10、25、50、100、200和400,再考慮到數(shù)控系統(tǒng)的4倍頻后對柵距的細(xì)分?jǐn)?shù)有20、40、100、200、400、800和1600,能實現(xiàn)測量步距從1nm到5μm,倍頻數(shù)選擇取決于光柵信號一個柵距周期的質(zhì)量。隨著倍頻數(shù)的增加,光柵傳感器的輸出頻率要下降,倍頻器的倍頻細(xì)分?jǐn)?shù)和輸入頻率的關(guān)系見表3。
表3 倍頻器的倍頻細(xì)分和輸入頻率
倍頻細(xì)分?jǐn)?shù):0-2-10-25-50-100-200-400
輸入頻率(KHz):600-500-200-100-50-25-12.5-6.25
選擇不同的倍頻數(shù)可以得到不同的測量步距。在Heidenhain的數(shù)顯表中可以設(shè)置15種之多的倍頻數(shù),最高頻數(shù)可達(dá)1024,即1,2,4,5,10,20,40,50,64,80,100,128,200,400,1024。在微機(jī)上用的數(shù)顯卡最大倍頻數(shù)可到4096。?
(3)光柵的參數(shù)標(biāo)記和絕對坐標(biāo)?
①光柵絕對位置的確立?
光柵是增量測量,光柵尺的絕對位置是利用參考標(biāo)記(零位)確定。參考標(biāo)記信號的寬度和光柵一個柵距的信號周期一致,經(jīng)后續(xù)電路處理后參考信號的脈沖寬度和系統(tǒng)一個測量步距一致。為了縮短回零位的距離,Heidenhain公司設(shè)計了在測量全長內(nèi)按距離編碼的參考標(biāo)記,每當(dāng)經(jīng)過兩個參考標(biāo)記后就可以確定光柵尺的絕對位置,如柵距為4μm和20μm的光柵尺掃描單元相對于標(biāo)尺的移動20mm后就可確定絕對位置,柵距為40μm的光柵尺要移動80mm才能確定絕對位置。?
②絕對坐標(biāo)傳感器?
為了在任何時刻測量到絕對位置,Heidenhain設(shè)計制造了LC系列絕對光柵尺,它是用七個增量碼道得到絕對位置,每個碼道是不同的,刻線最細(xì)碼道的柵距有兩種,一種是16μm,另一種是20μm,其分辨率都可為0.1μm,準(zhǔn)確度±3μm,測量長度可達(dá)3m,最大速度120m/min。它所采用的光電掃描原理和常用的透射光柵一樣,是具有四場掃描的影像測量原理。?
(4)光柵的載體?
光柵尺在20°±0.1℃環(huán)境中制造,光柵尺的熱性能直接影響到測量精度,在使用上光柵尺的熱性能最好和被測件的熱性能一致。考慮到不同的使用環(huán)境,Heidenhain光柵尺刻度的載體具有不同的熱膨脹系數(shù)。現(xiàn)有的材料有玻璃、鋼和零膨脹的玻璃陶瓷。普通玻璃的膨脹系數(shù)為8ppm/K,現(xiàn)在Heidenhain已采用了具有鋼一樣膨脹系數(shù)的玻璃。這些材料對振動、沖擊不敏感,具有確定的熱特性,不受氣壓和濕度變化的影響。對測量長度在3m以下的光柵尺載體材料都采用玻璃、玻璃陶瓷和鋼,超過3m以上則用鋼帶。通過對標(biāo)尺載體所用材料和相應(yīng)結(jié)構(gòu)的選擇,使光柵尺與被測件的熱性能有最佳的匹配。
-
位置檢測裝置在數(shù)控系統(tǒng)中的應(yīng)用
1數(shù)控系統(tǒng)對位置檢測裝置的要求 位置檢測裝置是指能夠把機(jī)械位移量轉(zhuǎn)換成一定形式的電信號的裝置,是數(shù)控機(jī)床的重要組成部分。在閉環(huán)系統(tǒng)中,它的主要作用是檢測位移量,并發(fā)出反饋信號和數(shù)控裝置發(fā)出的指令信號相比較,若有偏差,經(jīng)放大后控制執(zhí)行部件,
2015-05-13 -
數(shù)控機(jī)床集成在線測量技術(shù)在實際生產(chǎn)中的應(yīng)用
數(shù)控機(jī)床作為一種高效、高精度的制造裝備在制造企業(yè)中得到了廣泛應(yīng)用,而且正朝著高精度、高效率、開放化、智能化、復(fù)合化的方向發(fā)展。復(fù)合化的目標(biāo)是盡可能地在一臺機(jī)床上利用一次裝卡完成全部或大部分的加工任務(wù),以保證工件位置精度,提高生產(chǎn)效率 。加之
2014-07-07 -
針腳尺寸檢測
金屬針腳的尺寸檢測 一 應(yīng)用背景 當(dāng)前很多零部件都要求進(jìn)行尺寸檢測,很多情形下靠人工檢測不僅精度達(dá)不到要求而且檢測的效率很低,從而嚴(yán)重制約了產(chǎn)品的產(chǎn)量及質(zhì)量。本案采用了智能相機(jī)檢測不僅大大提高了產(chǎn)品的質(zhì)量,而且使生產(chǎn)效率
2012-08-10 -
五金件的尺寸檢測方案
采用背光檢測的方式,使檢測精度達(dá)到最高。 水平視野范圍:20.5mm 相機(jī)像素數(shù):640X480 pix 像素分辨率:0.032 mm/pix 檢測精度:0.0032mm 檢測時間: 15ms 檢測截圖
2012-08-10